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Abstract

We propose two new nonparametric predictive models: the multi-step nonparametric

predictive regression model and the multi-step additive predictive regression model, in which

the predictive variables are locally stationary time series. We define estimation methods and

establish the large sample properties of these methods in the short horizon and the long

horizon case. We apply our methods to stock return prediction using a number of standard

predictors such as dividend yield. The empirical results show that all of these models can

substantially outperform the traditional linear predictive regression model in terms of both

in-sample and out-of-sample performance. In addition, we find that these models can always

beat the historical mean model in terms of in-sample fitting, and also for some cases in terms

of the out-of-sample forecasting. We also compare our methods with the linear regression

and historical mean methods according to an economic metric. In particular, we show how

our methods can be used to deliver a trading strategy that beats the buy and hold strategy

(and linear regression based alternatives) over our sample period.
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prediction
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1 Introduction

A fundamental issue in finance is whether future stock returns are predictable using publicly

available information. The seminal studies of Keim and Stambaugh (1986), Fama and French

(1988) and Campbell and Shiller (1988) empirically demonstrated that variables such as dividend

yield, book-to-market ratio, or interest rate spreads have significant predictive ability for future

stock returns using data upto the early 1980’s. Fama (1991) interpreted these findings as evidence
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Project of Humanities and Social Sciences (Project No. 18YJC790015). The second author would like to thank the
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of time-varying risk premium rather than as evidence against market efficiency. Although financial

economists have identified variables that predict stock returns through time, the “correct” predictive

regression specification has remained an open issue. Several researchers have focused on using

linear models to predict stock returns (see for example, Lewellen, 2004; Campbell and Shiller,

1988). A systematic discussion on the performance of mostly linear predictive models is given

by Welch and Goyal (2008). However, as pointed out by Phillips (2015), there exists a potential

misbalancing problem in the linear predictive regression model if some of the predictors have long

memory and the response variable has short memory. This suggests including multiple persistent

variables (or their lags) or in the regression so as to allow balancing.

On the other hand, some other researchers considered nonlinear models to predict stock returns.

For example, Lettau and Van Nieuwerburgh (2008) suggested that after controlling for a possible

structural shift in the mean of dividend yield, the evidence of stock return predictability is much

stronger. Chen and Hong (2010) developed a nonparametric predictability test to examine whether

there exists a kind of predictability for equity returns for both short and long horizons and show

that the nonparametric model can outperform the linear model. Scholz, Nielsen and Sperlich (2015)

used nonparametric and semiparametric techniques to investigate the prediction of stock returns

over a one–year horizon based on yearly data. Nielsen and Sperlich (2003) also looked at one

year predictions into the future based on the nonparametric technique; they worked on the data

from the Danish stock market. Scholz, Sperlich and Nielsen (2016) further employed a two-step

nonparametric regression to show that bond returns could improve stock prediction. Despite the

significant amount of subsequent research, the predictability debate remains unresolved (see for

example, Stambaugh, 1999; Campbell and Yogo, 2006).

In this paper, we consider nonparametric approaches that allow for both linear and nonlinear

predictability. A major issue in using nonparametric methods is the curse of dimensionality (Stone,

1980), which limits the number of covariates that can be allowed in practice. A further issue that

affects the use of nonparametric methods is nonstationarity of the predictor variables, since this

slows down the convergence rates in contrast to the linear case where nonstationarity can speed up

convergence rates. To mitigate the curse of dimensionality we propose two new predictive models:

the multi-step additive predictive regression model (APR) and the multi-step nonparametric

predictive regression model (NPR). We use rescaled time as one of our covariates, which allows for

variation over time in the predictive relationship, a point emphasized by for example Pesaran and

Timmermann (1995). A closely related study is done by Kasparis, Andreou and Phillips (2015),

which considered nonparametric predictive regressions with the regressor being a highly persistent

process. In our work, we assume that the predictive variables are locally stationary time series.

Locally stationary processes have received a lot of attention. For example, Vogt (2012) studied

nonparametric models allowing for locally stationary regressors and a regression function that
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changes smoothly over time. Dong and Linton (2018) studied nonparametric additive models

that have deterministic time trend and both stationary (or locally stationary) and integrated

variables as components. We present the theoretical properties of our estimators of the regression

functions in the short horizon and long horizon case, where by long horizon we mean that the

horizon increases to infinity with the size of the sample. Many empirical studies consider the

long horizon case and our results support the use of nonparametric methods in this setting. To

evaluate the effectiveness of these predictive models, we investigate their capability of monthly

stock–return prediction over the period 1963-2011. The empirical results show that all of these

models can substantially outperform the traditional linear predictive regression model in terms of

both in-sample and out-of-sample performance. In addition, we find that these models can always

beat the historical mean model in terms of in-sample fitting, and also for some cases in terms

of the out-of-sample forecasting. The outlook for nonparametric methods looks somewhat more

promising than was presented in Diebold and Nason (1990), although we acknowledge that the

magnitude of the gain provided by these methods is modest. To quantify the economic benefits of

our methodology we define a trading strategy based on our fitting methods. We show that with

appropriate choice of tuning parameter our strategy outperforms the buy and hold method (which

corresponds to histroical mean predictor).

The rest of this paper is organized as follows. In Section 2, we describe our models (i.e. NPR

and APR) in detail and establish asymptotic properties for the nonparametric estimators of the

predictive functions. In Section 3, we present implementation details of our proposed new models,

including bandwidth selection in kernel estimation for the NPR model and choice of truncation

parameter in sieve estimation for the APR model. In Section 4, we compare the performance of

these models on the prediction of stock returns with two main competing methods. Section 5

concludes the paper. The proofs of the main results are given in an appendix.

2 Predictive models and estimation theory

We describe the NPR and APR models in Sections 2.1 and 2.2, respectively. For each model, we

establish the corresponding estimation theory and asymptotic properties.

2.1 The NPR model

Consider a nonparametric predictive regression model of the form

(1) yt+j = gj(τt, xt) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J,

where τt = t
n

(Robinson (1989) demonstrated that this “scaled time” requirement is necessary

for the asymptotic justification of the nonparametric kernel smoothing.), xt = (x1
t , · · · , xdt )> is a
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vector of locally stationary time series, gj(·) are unknown functions of τt and xt, and et+j follows a

α-mixing error process.This model allows for variation over time in the relationship between stock

returns and the covariates xt and is completely general in the form of the relationship. Typically,

yt is (logarithmic) stock returns, but we may also be interested in predicting prices or volatility. A

locally stationary process is defined as follows (see Vogt (2012)).

Definition of Locally Stationary Process: Process {xt} is said to be locally stationary if

for each scaled time point τ ∈ [0, 1] there exists an associated process {xt(τ)} satisfying

(i) {xt(τ)} is strictly stationary with density fxt(τ)(x);

(ii) it holds that

(2) ‖xt − xt(τ)‖ ≤
(∣∣∣∣ tn − τ

∣∣∣∣+
1

n

)
Unt(τ) a.s.,

where Unt(τ) is a process of positive variables such that E[(Unt(τ))ρ] < C for some ρ > 0 and C > 0

independent of τ, t and n, and ‖ · ‖ denotes an arbitrary norm on Rd.

It follows from the definition that a stationary process is also locally stationary. From the

above definition, we see that local stationarity accommodates a variety of stochastic processes

commonly used to model financial datasets.

We are also interested in predicting long horizon returns
∑J

j=1 yt+j using the covariates available

up to and including time t. It follows from our specification that

(3) yt:t+J =
J∑
j=1

yt+j =
J∑
j=1

gj(τt, xt) +
J∑
j=1

et+j = g(τt, xt) + et:t+J ,

where g(τt, xt) =
∑J

j=1 gj(τt, xt), and et:t+J =
∑J

j=1 et+j. Note however that cov(et:t+J , es:s+J) 6= 0

when |t− s| < J , which must be allowed for in the distribution theory.

For each fixed j and a given point (τ, x), we use the local constant kernel method to estimate

gj(τ, x) by

(4) ĝj(τ, x) =
n∑
t=1

Wnt(τ, x;hj)yt+j with Wnt(τ, x;hj) =
K
(
τt−τ
hj

)∏d
i=1K

(
xit−xi
hj

)
∑n

s=1K
(
τs−τ
hj

)∏d
i=1 K

(
xis−xi
hj

) ,
where x = (x1, · · · , xd)> for any vector x ∈ Rd, K(·) is a probability kernel function and hj is a

bandwidth parameter. For convenience, in this paper, we work with a product kernel and assume

that the bandwidth hj is the same for τ and xi (i = 1, 2, · · · , d), but the results can easily be

extended to the case involving non–product kernels and different bandwidths. We then define our

estimator of g(τ, x) to be the sum of the one dimensional estimators

(5) ĝ(τ, x) =
J∑
j=1

ĝj(τ, x).
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Let f(τ, x) = fxt(τ)(x) denote the densities of the variables xt(τ). Define κ0 =
∫
K2(u)du,

κ2 =
∫
u2K(u)du and

Rj(τ, x) =
κ2

2

d∑
i=1

(
2
∂gj(τ, x)

∂xi
∂f(τ, x)

∂xi
+
∂2gj(τ, x)

∂xi2
f(τ, x)

)
/f(τ, x),(6)

bj(τ, x) =
κ2

2

(
2
∂gj(τ, x)

∂τ

∂f(τ, x)

∂τ
+
∂2gj(τ, x)

∂τ 2
f(τ, x)

)
/f(τ, x),(7)

Then we have the following theorems; their proofs are given in Appendix A.1.

Theorem 2.1 Assume that Assumptions A.1.1–A.1.4 hold with β ≥ 4. Let nrhd+2
j → ∞ with

r = min{ρ, 1}, in which ρ is defined in (2). Moreover, suppose that f(τ, x) > 0 and that

σ2
j (x) = E[e2

t+j|xt = x] is continuous. Then for each given j and (τ, x), as n→∞,√
nhd+1

j (ĝj(τ, x)− gj(τ, x)−Bj,τ,x)→D N(0, Vj,τ,x),(8)

where Bj,τ,x = h2
j(Rj(τ, x) + bj(τ, x)) and Vj,τ,x = κd+1

0 σ2
j (x)/f(τ, x).

It can be shown that the bias of ĝj(τ, x) includes a standard component of order OP (h2
j) and a

nonstandard component of order OP (n−rh−dj ) (see Appendix A.1), however, given the assumption

nrhd+2
j →∞, the estimation bias resulted from the nonstationarity of regressors (i.e., the part of

order OP (n−rh−dj )) is asymptotically negligible. As a result, we find that the asymptotic properties

of ĝj(τ, x) are very similar to those for the standard local constant estimators with strictly stationary

regressors (see Page 63–64 in Chapter 2 of Li and Racine (2007)). Note however that although

we include rescaled time as a covariate, the large sample variance of the nonparametric estimator

depends only on the short run variance of the error term, not on its long run variance. This is

because the localization by the stochastic covariate effectively shuffles much of the dependence out

of the error term.

Let hj = ρj h, BJ(τ, x;h) = h2
∑J

j=1 ρ
2
j (Rj(τ, x) + bj(τ, x)), ΣJ(x) =

∑J
j=1 ρ

−(d+1)
j σ2

j (x) and

V (τ, x) = κd+1
0 /f(τ, x), in which h > 0 is a bandwidth parameter, ρj is a sequence of positive

numbers, and h→ 0 as n→∞ and ρj →∞ as j →∞. We then establish an asymptotic property

for ĝ(τ, x) in the following theorem.

Theorem 2.2 Let Assumptions A.1.1–A.1.4 hold. Suppose that limn→∞ nh
d+1Σ−1

J (x) =∞ and

limn→∞ nh
d+1 Σ−1

J (x)B2
J(τ, x;h) <∞ for each given (τ, x). Then as n→∞,

(9)
√
nhd+1 Σ−1

J (x) (ĝ(τ, x)− g(τ, x)−BJ(τ, x;h))→D N (0, V (τ, x)) .
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Theorems 2.1 and 2.2 show that ĝj(τ, x) is a consistent estimator of gj(τ, x) and is asymptotically

normally distributed. Theorem 2.2 remains valid regardless of whether J is fixed or varying. In

the case J → ∞, the rate of J → ∞ is linked implicitly in the conditions of nhd+1

ΣJ (x)
→ ∞ as

(n, J) → (∞,∞) and limn→∞ nh
d+1 Σ−1

J (x)B2
J(τ, x;h) < ∞. For example, when σ2

j (x) = 1 and

ρj = jγ for 0 < γ < 1
d+1

, the condition of nhd+1

ΣJ (x)
→ ∞ reduces to requiring nhd+1

J1−γ(d+1) → ∞ as

(n, J)→ (∞,∞). This can be satisfied when J =
[
nδ1
]

for a certain choice of 0 < δ1 < 1 such that

n1−δ1(1−γ(d+1))hd+1 →∞ as n→∞. In the parametric case, the large sample variance reflects the

use of overlapping data and standard errors need to be adjusted, Hansen and Hodrick (1980) and

Hodrick (1992); in the nonparametric case, we have the ”whitening by smoothing” phenomenon,

which has been commented on by many authors. Our results show that this continues to hold

when the degree of overlap increases with sample size. Consequently, standard error construction

is straightforward.

Some details for practical implementations (in particular, the choice of bandwidth hj) are

discussed in Section 3 before an empirical application is given in Section 4. The proofs of Theorems

2.1 and 2.2 are given in Appendix A.1 below.

2.2 The APR model

Consider a nonparametric additive predictive regression model of the form

(10) yt+j = βj(τt) +
d∑
i=1

gij(x
i
t) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J,

where τt = t/n, βj(·) and gij(·), for i = 1, · · · , d, are unknown smooth functions, xt = (x1
t , · · · , xdt )>

is a locally stationary process, and et+j is an error term. Here, βj(·) is defined on [0, 1]. This

model allows for nonlinear predictability from the covariates to the response and it allows for

time variability through the intercept functions βj(·). It is also a special case of the NPR model.

Without loss of generality and to simplify the notation, we assume that d = 1. So model (10) can

be simplified as

(11) yt+j = βj(τt) + gj(xt) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J.

In this paper, we use the series estimation method to estimate all the unknown functions in

model (11). Naturally, βj(·) and gj(·) belong to different function spaces as described below.

First, we assume that βj(·) ∈ L2[0, 1] = {u(τ) :
∫ 1

0
u2(τ)dτ <∞}, in which the inner product is

given by 〈u1, u2〉 =
∫ 1

0
u1(τ)u2(τ)dτ and the induced norm is ‖u‖2 = 〈u, u〉. Let φ0(τ) = 1, and for

s ≥ 1, φs(τ) =
√

2 cos(πsτ). Then {φs(τ)} is an orthonormal basis in the Hilbert space L2[0, 1],

and can be used to expand the unknown continuous function βj(τ) ∈ L2[0, 1] into an orthogonal
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series of the form:

(12) βj(τ) =
∞∑
s=0

cs,j,1 φs(τ), where cs,j,1 = 〈βj(τ), φs(τ)〉.

Note that {φs(τ)} can be replaced by any other orthonormal basis in L2[0, 1].

In order to expand gj(xt), suppose that the function gj(·) is in Hilbert space L2(V, dF (x)) =

{q(x) :
∫
V
q2(x)dF (x) < ∞}, where F (x) is a distribution on the support V that may not be

compact. The sequence {ps(x), s ≥ 0} is an orthonormal basis in L2(V, dF (x)), where an inner

product is given by 〈q1, q2〉 =
∫
V
q1(x)q2(x)dF (x) and the induced norm is ‖q‖2 = 〈q, q〉. Hence, the

unknown function gj(x) has an orthogonal series expansion in terms of the basis of {ps(x), s ≥ 0},

(13) gj(x) =
∞∑
s=0

cs,j,2 ps(x), where cs,j,2 = 〈gj(x), ps(x)〉.

Let k1j and k2j be two positive integers. Let βk1j(τ) =
∑k1j

s=1 cs,j,1 φs(τ) be the truncation

series of βj(τ) with truncation parameter k1j , and γk1j =
∑∞

s=k1j+1 cs,j,1 φs(τ) be the corresponding

residual after truncation. It is easy to know that βk1j(τ)→ βj(τ) as k1j →∞ in pointwise sense

for smooth βj(τ). Similarly, let gk2j(x) =
∑k2j−1

s=0 cs,j,2 ps(x) and γk2j =
∑∞

s=k2j
cs,j,2 ps(x) be the

truncation series and the residual of gj(x), respectively. It follows that gk2j (x)→ gj(x), as k2j →∞
under certain conditions.

Denote ϕk1j(τ) = (φ1(τ), · · · , φk1j(τ))> and c1j = (c1,j,1, · · · , ck1j ,j,1)>. Then we have βk1j(τ) =

ϕk1j(τ)>c1j. Denote also ak2j(x) = (p0(x), · · · , pk2j−1(x))> and c2j = (c0,j,2, · · · , ck2j−1,j,2)
>. Ac-

cordingly, gk2j(x) = ak2j(x)>c2j. Thus, model (11) can be written as

(14) yt+j = ϕk1j(τt)
>c1j + ak2j(xt)

>c2j + γk1j(τt) + γk2j(xt) + et+j, for t = 1, · · · , n.

Let y(j) = (yj, · · · , yn+j)
>, c(j) = (c>1j, c

>
2j), e(j) = (ej, · · · , en+j)

>, γ(j) = (γj(1), · · · , γj(n))>

where γj(t) = γk1j(τt) + γk2j(xt), t = 1, · · · , n, and

Bnkj =


ϕk1j(τ1)> ak2j(x1)>

...
...

ϕk1j(1)> ak2j(xn)>

(15)

be an n× kj matrix, where kj = k1j + k2j. Then equation (14) can be written as

(16) y(j) = Bnkjc(j) + γ(j) + e(j).

Then the ordinary least squares (OLS) estimator of c(j) is given by ĉ(j) = (ĉ>1j, ĉ
>
2j)
> =

(B>nkjBnkj)
−1B>nkjy(j). Therefore, for any τ ∈ [0, 1] and x ∈ V , we define β̂j(τ) = ϕk1j(τ)>ĉ1j and
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ĝj(x) = ak2j (x)>ĉ2j as the estimators of the unknown functions βj(τ) and gj(x), respectively. As a

result, we can further write the above results as

(17) (β̂j(τ), ĝj(x))> = Φj(τ, x)>ĉ(j),

where Φj(τ, x) is a block matrix given by

Φj(τ, x) =

 ϕk1j(τ) 0

0 ak2j(x)

 .(18)

Before establishing asymptotic properties for the estimators, we need some additional notations.

Define ∆nj =
[
Φj(τ, x)>U−1

kj
VkjU

−1
kj

Φj(τ, x)
]1/2

, where Ukj is a symmetric 2 × 2 block matrix of

order kj × kj and Vkj is a 2× 2 symmetric block matrix of the form:

Ukj =

 U11 U12

U>12 U22

 and Vkj =

 V11 V12

V >12 V22

 .(19)

in which U11 = Ik1j , U12 =
∫ 1

0
ϕk1j(τ)E[ak2j(x1(τ))>]dτ with elements

∫ 1

0
φi(τ)E[ps(x1(τ))]dτ

for 1 ≤ i ≤ k1j, 0 ≤ s ≤ k2j − 1, and U22 =
∫ 1

0
E[ak2j(x1(τ))ak2j(x1(τ))>]dτ with elements∫ 1

0
E[pi(x1(τ))ps(x1(τ))>]dτ for i, s = 0, · · · , k2j − 1, V11 =

∫ 1

0
ϕk1j(τ)ϕk1j(τ)>σ2(τ)dτ , V12 =∫ 1

0
ϕk1j(τ)σ2(τ)E[ak2j(x1(τ))>]dτ and V22 =

∫ 1

0
σ2(τ)E[ak2j(x1(τ))ak2j(x1(τ))>]dτ .

We then establish the following theorems; their proofs are given in Appendix A.2.

Theorem 2.3 Suppose that uniformly over n, all the eigenvalues of Ukj and Vkj are positive, and

that Assumptions A.2.1-A.2.6 hold. Then, for any τ ∈ [0, 1] and x ∈ V , as n→∞, we have

∆−1
nj

 √n[β̂j(τ)− βj(τ)]
√
n[ĝj(x)− gj(x)]

→D N(0, I2),(20)

where 0 is a 2-dimensional zero column vector.

Define mj(τ, x) = βj(τ) + gj(x), m̂j(τ, x) = β̂j(τ) + ĝj(x), m(τ, x) =
∑J

j=1mj(τ, x) and

m̂(τ, x) =
∑J

j=1 m̂j(τ, x). Define Ωnj = ∆nj∆nj = Φj(τ, x)>U−1
kj
VkjU

−1
kj

Φj(τ, x). Write

Ωnj =

 Ω11,j Ω12,j

Ω21,j Ω22,j

 .

and Σnj = Ω11,j + Ω22,j + 2Ω12,j.
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Theorem 2.4 Let Assumptions A.2.1–A.2.6 hold. Then as n→∞,

(21)
√
nΓ
−1/2
nJ (m̂(τ, x)−m(τ, x))→D N (0, 1) ,

where ΓnJ =
∑J

j=1 Σnj.

Remark. (i) Note that Theorems 2.3 and 2.4 show that each of βj(τ) and gj(x) can be

consistently estimated and asymptotically normally distributed regardless of whether j is fixed or

not. Moreover, m(τ, x) can also be consistently estimated. (ii) Note also that Theorem 2.4 remains

valid when J →∞. In the case J →∞, the rate of J →∞ is linked implicitly in the condition of
n

ΓnJ
→∞ as (n, J)→ (∞,∞).

Section 3 below discusses about how to choose the truncation parameters kj. The proofs of

Theorems 2.3 and 2.4 are given in Appendix A.2 below.

3 Implementation

In this section, we will discuss computational details on the implementation of the NPR and APR

models, particularly the bandwidth selection for the NPR model and the truncation parameter

choice for the APR model.

3.1 Bandwidth selection

As we mentioned in Section 2, we use the local constant kernel method to estimate the unknown

function gj(·) in the NPR model. It is generally accepted that the performance of the kernel esti-

mator is mainly determined by bandwidth. In the last thirty years, there has been a comprehensive

list of studies on the bandwidth selection. This section focuses on the issue of how to choose ρj

and h involved in hj = ρj h used in the estimation of model (1). Similar discussion may be done

for model (4).

Our approach is motivated by existing studies in Härdle et al. (1988), Härdle et al. (1989), Fan

and Gijbels (1995), Xia and Li (2002) and Cheng et al. (2018). Let us introduce the following

notation:

(22) Dj(hj) =
1

n

n∑
t=1

(ĝj(τt, xt)− gj(τt, xt))2w(τt, xt),

where w(·, ·) is a probability kernel function satisfying
∫∞
−∞

∫ 1

0
w2(τ, u)dτ du <∞.

Let ĥj be chosen such that it minimizes Dj(hj) over all possible {hj}. Let hj0 be chosen such

that it minimizes dj(hj) = E [Dj(hj)]. In view of both the establishment and the proofs of the

9



results in Xia and Li (2002), it can be shown that as n→∞

(23) n
3
10

(
ĥj
hj0
− 1

)
→D N(0, σ2

j0)

for each fixed j, where 0 < minj≥1 σ
2
j0 ≤ maxj≥1 σ

2
j0 <∞, and hj0 = ρj h0 with ρj = jβ or θj, in

which h0 > 0, β > 0 and θ > 1 will all be estimated in the rest of this section.

Using equation (23), we have for large enough n

(24) log

(
ĥj
hj0

)
= log

(
1 +

ĥj
hj0
− 1

)
≈ ĥj
hj0
− 1 ≡ n−

3
10 εj,

where εj = n
3
10

(
ĥj
hj0
− 1
)
→D N(0, σ2

j0).

This suggests an approximate regression model of the form

log
(
ĥj

)
= log (hj0) + ηj = log(h0) + log(ρj) + ηj(25)

=

log(h0) + β log(j) + ηj, if ρj = jβ,

log(h0) + j log(θ) + ηj, if ρj = θj,

where ηj = n−
3
10 εj can be viewed as a sequence of random errors with E[ηj ] = 0 and 0 < E

[
η2
j

]
=

n−
3
5 σ2

j0.

We then focus the case of either ρj = jβ or ρj = θj. Let Zj = log(ĥj). For the case of ρj = jβ,

we can estimate β by an ordinary least squares (OLS) estimator of the form

(26) β̂ =

(
J∑
j=1

(
log(j)− log(J)

)2
)−1 J∑

j=1

(
log(j)− log(J)

) (
Zj − Z

)
,

where log(J) = 1
J

∑J
j=1 log(j) and Z = 1

J

∑J
j=1 Zj.

Equations (25) and (26) imply that the following rate of convergence:

(27) β̂ − β = OP

((√
J log(J)

)−1

· n−
3
10

)
.

For the case of ρj = θj, the OLS estimator of γ = log(θ) is given by

(28) γ̂ =

(
J∑
j=1

(
j − J

)2

)−1 J∑
j=1

(
j − J

) (
Zj − Z

)
,

where J = 1
J

∑J
j=1 j = (J+1)

2
.

Meanwhile, equations (25) and (28) imply a rate of convergence of the form:

(29) γ̂ − γ = OP

(
J−

3
2 · n−

3
10

)
.

We finally estimate h0 by ĥ0 = 1
J

∑J
j=1 ĥj ρ̂

−1
j , where ρ̂j = jβ̂ or θ̂j, in which θ̂ = eγ̂.

Equations (27) and (29) imply that the OLS estimators may have fast convergence rates. If we

do choose h0 = n−
1
5 and assume that hj → 0 as (n, j)→ (∞,∞), there will be some restrictions

on (J, n) such that either J β̂ · n− 1
5 → 0 or θ̂J · n− 1

5 → 0 as (n, J)→ (∞,∞).

10



3.2 Truncation parameter choice

We use the series expansion method to estimate unknown functions βj(·) and gj(·) in the APR

model. A key issue in using the series method in practice is the choice of truncation parameters kj

(k1j + k2j) in the orthogonal expansions. Since there is no universal guide for the choice of such

parameters, in this study, we choose the truncation parameters for the APR model through the

out-of-sample mean squared errors. The procedure is given as follows.

• We divide the sample into two sets, the initialization set with sample size n1 and validation

set with sample size n− n1.

• The initialization set is used to estimate the model for a given value of (k1j, k2j), then the

estimated model is used to forecast the response variable in the validation set, based on

which we compute the out-of-sample mean squared errors.

• We repeat the above procedure for all feasible values of (k1j, k2j).

• We then pick the optimal value of (k1j, k2j) which results in the smallest out-of-sample mean

squared errors.

In the following section, we will evaluate the effectiveness of these models by investigating their

capability of stock return prediction.

4 Stock return prediction using NPR and APR models

In this section, we implement the NPR and APR models proposed in Section 2 to predict stock

return using dividend yield, book-to-market ratio and earning-price ratio. The price and dividends

data are from Center for Research in Security Prices (CRSP) data set, and we focus on the value-

weighted NYSE index so as to be consistent with existing research. Dividend yield is calculated

monthly on the value-weighted NYSE index, and it is defined as dividends paid over the prior year

divided by the current level of index. The returns data are from April 1963 to December 2011 with

a total number of 585 data points. We investigated the prediction for the excess value-weighted

stock return (real return or excess return) which is defined by the value-weighted return minus t-bill

rate. Let x1
t , x

2
t and x3

t denote the dividend yield, the book-to-market ratio and the earning-price

ratio at time t, respectively. The time series plots of the dividend yield, book-to-market ratio,

earning-price ratio and excess value-weighted stock returns are given in Figure 1. We also compute

the correlation coefficient between the three predictors and find that they are highly correlated.

In particular, the correlation is 0.9493 between x1
t and x2

t , 0.8921 between x1
t and x3

t , and 0.9027

between x2
t and x3

t .

11



Figure 1: Plot of dividend yield, book-to-market ratio, earning-price ratio and excess value-weighted

stock returns.
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In the following, we will examine the performance of the NPR and APR models for predicting

the stock return. For comparison purposes, we also considered the commonly used historical mean

model and the traditional linear predictive regression model. Therefore, we predict stock returns

using the following four models:

• Mean: yt+j = µ+ et+j;

• Linear: yt+j = αj + β1jx
1
t + β2jx

2
t + β3jx

3
t + et+j;

• NPR: yt+j = gj(τt, x
1
t , x

2
t , x

3
t ) + et+j;

• APR: yt+j = g0
j (τt) +

∑3
i=1 g

i
j(x

i
t) + et+j.
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Note that we use kernel method to estimate the unknown function gj(·) in the NPR model.

We use the series expansion method to estimate unknown functions gij(·), for i = 0, 1, 2, 3, in

the APR model. We define the truncation series with truncation parameter kij for gij(τ) as

gij(τ, kij) =
∑kij

s=1 cs,j,i φs(τ), for i = 0, 1, 2, 3, and let cij = (c1,j,i, · · · , ckij ,j,i)> and φs(τ) denote

an orthonormal basis. Here we choose φs(τ) =
√

2 cos(πsτ) for s ≥ 1. Then we estimate cij, for

i = 0, 1, 2, 3, by the ordinary least squares method. As discussed in Section 3, in this study, we

choose the truncation parameters for the APR model through the out-of-sample mean squared

errors. For different prediction steps, we may obtain different truncation parameters. For example,

we have c(1) = (3, 3, 1, 1)> and c(36) = (1, 1, 1, 1)>.

In what follows, we will evaluate the performance of all of these models from both in-sample

and out-of-sample performance.

4.1 Full sample estimation

In this section, we use the whole sample from April 1963 to December 2011 to evaluate the

in-sample performance of all of these models in terms of the coefficient of determination. For a

given predictive step j, the coefficient of determination can be calculated by

(30) R2
IS,j = 1−

∑n
t=1(yt+j − ŷt+j)2∑n
t=1(yt+j − yj)2

,

where yt+j is the observed stock return, ŷt+j is the corresponding predicted stock return and

yj = 1
n

∑n
t=1 yt+j, which is also the predicted return from historical mean model. Thus for the

historical mean model, R2
IS,j takes value of zero for all given values of j. From (30), it is easy to

see that R2
IS,j can be written as

(31) R2
IS,j = 1− MSEA

MSEM

,

where MSEM = 1/n
∑n

t=1(yt+j − yj)2 is the mean squared error of the historical mean model and

MSEA =
∑n

t=1(yt+j − ŷt+j)2 is the mean squared error of an alternative model which produces

the predicted value ŷt+j. Therefore, R2
IS,j can also indicate the relative ratio of the mean squared

errors between the historical mean model and the other models. If R2
IS,j for a certain model is

positive, then this model performs better than the historical mean model. Simply speaking, the

larger the R2
IS,j is, the better the corresponding model performs.

The results of R2
IS,j for different models with j = 1, 6, 12, 18, 24, 36 are presented in Table 1. To

see the behavior of R2
IS,j for different prediction steps, we also produce the plot of R2

IS,j for these

models with j = 1, · · · , 36 in Figure 2. From Table 1 and Figure 2, we find the following facts.

• The NPR and APR models have larger R2
IS,j than the traditional historical mean model and

linear model, for j = 1, 2, · · · , 36. This means that the NPR and APR models have better

in–sample performance than the traditional mean and linear model.

13



• When the prediction step is smaller than 22, the APR model has better performance than

the NPR model, but when prediction step becomes large, the NPR and APR models have

similar performance.

Table 1: Results of R2
IS,j for all the models.

Models j = 1 j = 6 j = 12 j = 18 j = 24 j = 36

Mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Linear 0.00751 0.00945 0.00609 0.00300 0.00173 0.00263

NPR 0.02855 0.04230 0.01810 0.01811 0.01548 0.01267

APR 0.04208 0.07118 0.02788 0.02360 0.01161 0.00740

Figure 2: Plot of R2
IS,j with j = 1, 2, · · · , 36 for all the models.
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From the results in Table 1 and Figure 2, we observe that the NPR and APR models have

more advantages in terms of R2
IS,j. We also plot the pictures of estimated functions and their 95%

confidence intervals in Figure 3, including ĝj(τt, x
1
t , x

2
t , x

3
t ) in the NPR, and ĝ0

j (τt) and ĝij(x
i
t), for

i = 1, 2, 3 in the APR model.

As we are more interested in the predicted returns of the models, in Figure 4, we plot the

corresponding values produced by these models when j = 1 and j = 3. From Figure 4, we can

see that the predicted returns by the NPR and APR models, in particular the APR model, are

more volatile and are much closer to the true value of return than estimates generated by both the

linear model and the historical mean model.
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Figure 3: Plot of estimated functions and 95% confidence intervals.
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It is pointed out that the literature on parametric model specifications, such as Hansen and

Hodrick (1980) and Hodrick (1992), discusses the standard errors and then about how to correct

standard errors for overlappingness. In our nonparametric framework, we are mostly looking at

out–of–sample evaluation as discussed in the following section.

4.2 Out-of-sample evaluation

In the existing literature, the general conclusion is that the evidence for stock return predictability

is predominantly in-sample while out-of-sample stock return forecast fails to beat the simple

historical mean forecast (see for example, Welch and Goyal (2008)). To check whether it is still

true with the NPR and APR models, in this section, we evaluate the out-of-sample performance of

these models using the following expansive window scheme. The details are described as follows.

• For the first window, we conduct the multi-step prediction based on n−1 observations. At the

point xn, we predict yn+1 using these n−1 pairs of observations {(x1, y2), (x2, y3), · · · , (xn−1, yn)}.
The estimated value of yn+1 is denoted as ŷn+1. Then we use the observations

{(x1, y3), (x2, y4), · · · , (xn−2, yn), (xn−1, ŷn+1)}

to predict yn+2 at the point xn. Similarly, we predict yn+3 at the point xn using observations

{(x1, y4), (x2, y5), · · · , (xn−2, ŷn+1), (xn−1, ŷn+2)}.
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Figure 4: Plots of predicted returns by all the models when j = 1 (top panel) and j = 3 (bottom

panel).
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Repeating such procedure, we obtain the predicted return series for yn+1, yn+2, · · · , yn+J

denoted as

ŷn+1,1, ŷn+1,2, · · · , ŷn+1,J .

• The second window is obtained by expanding the first window to include xn. At the point xn+1,

we conduct the multi-step prediction to predict yn+2, yn+3, · · · , yn+J+1 with the predicted

values denoted as

ŷn+2,1, ŷn+2,2, · · · , ŷn+2,J .

• The procedure continues until we obtain the Rth window. At the point xn+R−1, we conduct

the multi-step prediction for yn+R, yn+R+1, · · · , yn+R+J−1 and the predicted values are denoted

16



as

ŷn+R,1, ŷn+R,2, · · · , ŷn+R,J .

We know that the out-of-sample forecast uses only the data available up to the time at which

the forecast is made. Therefore, for a given predictive step j, following the work by Campbell and

Thompson (2008), we compute the out-of-sample R2, which is defined as

R2
OOS,j,n,R = 1−

∑R
r=1(yn+r,j − ŷn+r,j)

2∑R
r=1(yn+r,j − yn+r,j)

2
,

where ŷn+r,j is the j-th step predicted return in the r-th window, yn+r,j is the corresponding

observed return, yn+r,j is the sample mean of observations using the information up to n+ r − 1,

n is the sample size of the initial data to get a regression estimate at the start of evaluation

period, and R is the total number of expansive windows. Here we choose n = 241, that is, we

start the prediction of stock return in June 1983 and R = 308. The results of R2
OOS,j,n,R with

j = 1, 6, 12, 18, 24, 36 are presented in Table 2. We also plot R2
OOS,j,n,R with j taking values from 1

to 36 in Figure 5. From Table 2 and Figure 5, we can find that (1) overall, linear regression model

has the lowest R2
OOS,j,n,R and has no advantage compared with other competing models; (2) the

NPR model performs better than the APR model for most of the predictive steps; (3) when the

prediction step is between 17 and 20, the NPR model outperforms the historical mean model, but

when the prediction step is small, they have similar performance.

Table 2: Results of R2
OOS,j,n,R for all the models.

Models j=1 j=6 j=12 j=18 j=24 j=36

Mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Linear -0.02884 -0.03592 -0.02763 -0.02643 -0.01306 -0.01915

NPR -0.00160 -0.00053 -0.00665 0.00315 0.00245 -0.00119

APR -0.02037 -0.00478 -0.01409 -0.01824 -0.00800 -0.01960
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Figure 5: Plot of R2
OOS,j,n,R with j = 1, 2, · · · , 36 for all the models.
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Apart from looking at behaviour of R2
OOS,j,n,R of all of these models with the increase of

predictive steps, we also looked at the cumulative out-of-sample R2 for one particular given value

of j, that is, we look at the performance of R2
OOS,j,n,R with the increase of R. We produce the plot

for the cases of j = 1, j = 12 and j = 24 in Figure 6. Note that in Figure 6, we start the plot for

R ≥ 12 as it cannot tell much information when R is too small. From Figure 6, we can see that in

the cases of j = 1 and j = 12, when R increases, the historical mean model beat other models,

since the other three models have smaller cumulative out-of-sample R2 than that of the historical

mean model. However, when j = 24, we find that the NPR model has an absolute advantage

compared with the other three models.

We also plot the out-of-sample predicted return when j = 1 and j = 12 in Figure 7, from which

we can find that the NPR model generate more volatile predicted returns than the historical mean

model.
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Figure 6: Plots of cumulative R2
OOS,j,n,R with R ranging from 12 to 308 for all the models (top panel:

j=1; middle panel: j=12; bottom panel: j=24).
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Figure 7: Plots of out-of-sample predicted returns for all the models (top panel: j=1; bottom panel:

j=12).
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4.2.1 Long Horizon Return Prediction

We also examined the out-of-sample prediction for long horizon returns yn:n+J =
∑J

j=1 yn+j. We

define the out-of-sample R2 as follows.

R2
OOS,J,n,R = 1−

∑R
r=1(y

(r)
n:n+J − ŷ

(r)
n:n+J)2∑R

r=1(y
(r)
n:n+J −

∑J
j=1 yn+r,j)

2
,

where ŷ
(r)
n:n+J denotes the estimated value of y

(r)
n:n+J from the r-th expansive window. With

J = 2, 3, 4, 6, 12, we present the results of R2
OOS,J,n,R in Table 3, from which we can find that when

J is reasonably small, the NPR model performs best. When J takes values of 6 and 12, historical

mean model performs best. Among all the cases, the linear regression model may be the last choice.

Table 3: Results of R2
OS,Jn,R for all the models.

Models J=2 J=3 J=4 J=6 J=12

Mean 0.00000 0.00000 0.00000 0.00000 0.00000

Linear -0.05407 -0.07740 -0.10983 -0.17632 -0.34089

NPR 0.00151 0.01835 0.01446 -0.01150 -0.02483

APR -0.03876 -0.05722 -0.07078 -0.08493 -0.12825

We also computed the out-of-sample mean squared prediction errors for long horizon returns

yn:n+J =
∑J

j=1 yn+j given by

MSE =
1

R

R∑
r=1

(y
(r)
n:n+J − ŷ

(r)
n:n+J)2,

where ŷ
(r)
n:n+J is from the r-th expansive window.

With J = 2, 3, 4, 6, 12, we present the results of MSE in Table 4. From Table 4, we can see the

effect of different horizon J on the prediction accuracy measured by the mean squared errors–MSEs.

We find that when J is smaller than 4, the NPR model results in the smallest value of MSE. In

other cases, the historical mean model performs best in predicting yn:n+J .

Table 4: Results of MSE for all the models.

Models J=2 J=3 J=4 J=6 J=12

Mean 0.00385 0.00579 0.00773 0.01179 0.02403

Linear 0.00406 0.00624 0.00858 0.01387 0.03223

NPR 0.00385 0.00568 0.00762 0.01192 0.02463

APR 0.00400 0.00612 0.00828 0.01279 0.02712
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4.3 Trading strategy

It is hard to beat the historical mean model according to out of sample prediction measured by

squared error loss. We now turn to an economic metric for comparing our methods with the

historical mean model. In this section, we propose an explicit trading strategy that switches

between stocks and bonds based on whether predicted stock returns are greater than a threshold.

We also compare this strategy with the buy and hold strategy that just holds stocks for the

duration.

We first employ our proposed NPR and APR models to predict stock returns respectively, and

obtain their corresponding one-step-ahead forecasts, then we compare these values with a chosen

threshold. If the corresponding value is greater than the given threshold, we put money in stock

market; Otherwise we buy a risk free bond with rate r0 = 0.02/12 per month. So our trading

strategy earns in one period is wtrt+1 + (1−wt)r0, where r0 is the bond rate and rt+1 is the outturn

on the stock market next period and our weights are wt = I(r̂t+1 > c), in which c is a selected

threshold. In this study, we consider six different thresholds (0.001, 0.002, · · · , 0.006, which are

corresponding to quantiles between 30%-50% of historical distribution of returns) to examine the

performance of our trading strategy with the buy and hold strategy in terms of profit. We compute

the profit of both strategies based on the NASDAQ Composite Index. For example, In May 1983,

NASDAQ index was at its closing price of 308.73 and until December 2011, the closing price was

then 2605.15. Assume that the initial investment is 1 unit, then using a buy-and-hold strategy will

result in a return of 7.4383 (7.4383= 2605.15/308.73-1).

To check the robustness of our proposed trading strategy, we consider three investment starting

dates, i.e., May 1983, May 1993, and May 2003. We assume that the cost such as transaction fee

during the trading could be ignored.

Tables 5–6 show the results of stock return predictions that with NPR and APR models

respectively. For comparison, we also present the corresponding results using the linear model in

Section 4 in Table 7. To see whether our trading strategy involves lots of buying and selling, we

present the number of transactions that would be required in each case in Table 8. From these

results, we can see that there always exists some thresholds under which our proposed strategies

can outperform the buy and hold strategy in terms of profit. For example, for the NPR model, the

thresholds are 0.001,0.002 and 0.003; and for the APR model, the thresholds are 0.001 and 0.002.

Moreover, using the same trading strategy, our proposed models can make more profit than the

linear model in almost all cases. As a result, we see that our proposed trading strategies with the

use of NPR and APR could be better alternatives of the buy and hold strategy in reality.
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Table 5: Profit of trading strategy with the use of NPR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 7.9413 7.9413 7.7871 8.5917 1.6772 2.6091 7.4383

1993 May 2.9617 2.9617 2.9617 2.6624 1.1923 1.9554 2.7188

2003 May 0.7895 0.7895 0.7895 0.6543 0.4523 0.1871 0.6324

Table 6: Profit of trading strategy with the use of APR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 10.4255 12.0673 9.1203 10.7768 9.4310 6.1093 7.4383

1993 May 2.8739 2.8739 2.5552 0.8061 0.2221 0.3799 2.7188

2003 May 0.7498 0.7498 0.6557 -0.0728 -0.2609 -0.1192 0.6324

Table 7: Profit of trading strategy with the use of linear model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 2.7176 3.8320 0.7033 0.5771 0.3669 0.2441 7.4383

1993 May 1.6131 2.8377 0.5896 0.7162 0.9250 0.8333 2.7188

2003 May 0.2214 0.0959 0.1022 0.4053 0.5763 0.5012 0.6324
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Table 8: Number of transactions required using our trading strategy.

NPR

Starting date
Our trading strategy with different threshold

Duration
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 0 0 31 70 199 297 343

1993 May 0 0 0 4 79 177 223

2003 May 0 0 0 4 39 103 103

APR

1983 May 61 73 93 117 131 166 343

1993 May 13 13 15 45 88 114 223

2003 May 13 13 14 42 80 90 103

Linear

1983 May 148 178 222 250 267 281 343

1993 May 126 151 187 204 213 218 223

2003 May 41 51 69 84 93 98 103

In this trading strategy, we could also use the historical t-bill rate instead of the risk free bond

rate 0.02/12. The results are presented in Tables 9-11. It is easy to see that the results are similar

to those obtained by using the risk free bond rate.

Table 9: Profit of trading strategy with the use of NPR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 7.9413 7.9413 9.3190 11.5301 3.0527 4.9841 7.4383

1993 May 2.9617 2.9617 2.9617 2.6397 1.1664 2.1989 2.7188

2003 May 0.7895 0.7895 0.7895 0.6440 0.3708 0.1653 0.6324
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Table 10: Profit of trading strategy with the use of APR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 12.7081 15.1186 12.2220 15.1435 13.7191 9.6557 7.4383

1993 May 2.7932 2.7932 2.4863 0.8163 0.2515 0.4402 2.7188

2003 May 0.7134 0.7134 0.6187 -0.0757 -0.2546 -0.1215 0.6324

Table 11: Profit of trading strategy with the use of linear model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 3.3436 4.9845 1.3156 1.2402 0.9961 0.8564 7.4383

1993 May 1.8263 3.3252 0.9093 1.0871 1.3594 1.2289 2.7188

2003 May 0.1701 0.0520 0.0824 0.3909 0.5724 0.4855 0.6324

5 Conclusions

In this paper, we have introduced the multi–step NPR and the APR models, in which the predictive

variables are locally stationary time series. Estimation theory and asymptotic properties have been

established for all of these models in both the short horizon and long horizon case. Moreover, we

have employed these models to investigate monthly stock return predictability over the period

1963-2011. The empirical results show that all of these models can substantially outperform

the traditional linear predictive regression model in terms of both in-sample and out-of-sample

performance. In addition, we have found that these models can always beat the historical mean

model in terms of in-sample fitting, and also for some cases in terms of the out-of-sample forecasting.

In particular, we have found that the NPR model performs relatively well, especially at predicting

two, three, and four month returns out of sample, where it beats all the alternative methods we

have considered. We also compared our methods with the linear regression and historical mean

methods according to an economic metric. In particular, we showed how our methods can be used

to deliver a trading strategy that beats the buy and hold strategy (and linear regression based

alternatives) over our sample period.
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Appendix

In this appendix, we provide the proofs of Theorem 2.1–Theorem 2.4. Sections A.1 and A.2 below provide

the necessary assumptions and the proofs of the main results for the estimators in the NPR and APR

models, respectively.

A.1. The NPR model

First, we present some assumptions for the establishment of asymptotic properties for ĝj(τ, x) and g(τ, x)

for the NPR model.

Assumption A.1.1 (i) The process {xt} is locally stationary according to the definition in Section 2.1.

(ii) It holds that maxj≥1 E|et+j |s ≤ C for some s ≥ 2 and C <∞. (iii) The array {xt, et+1, · · · , et+J}
is α–mixing with mixing coefficient α satisfying α(k) ≤ Ak−β for some A <∞ and β > 2s−2

s−2 .

Assumption A.1.2 (i) gj(τ, x) is twice continuously partially differentiable. (ii) The densities f(τ, x) :=

fxt(τ)(x) of the variables xt(τ) are smooth in τ for each time point τ ∈ [0, 1]. In particular, f(τ, x)

is differentiable with respect to τ for each x ∈ Rd, and the derivative ∂f(τ, x)/∂τ is continuous. (iii)

f(τ, x) is partially differentiable with respect to x for each τ ∈ [0, 1]. The derivatives ∂f(τ, x)/∂xi

are continuous for i = 1, · · · , d.

Assumption A.1.3 Let fxt and fxt,xt+l be the densities of xt and (xt, xt+l), respectively. For any

compact set S ⊆ Rd, there exists a constant C = C(S) such that supt supx∈S fxt(x) ≤ C and

supt supx∈S E[|et+j |s|xt = x]fxt(x) ≤ C. Moreover, there exists a natural number l? <∞ such that

for all l ≥ l?, supt supx,x′∈S E[|et+j ||et+j+l||xt = x, xt+l = x′]fxt,xt+l(x, x
′) ≤ C.

Assumption A.1.4 (i) The kernel function K(·) is bounded and has compact support, that is, K(v) = 0

for all |v| > C1 with some C1 < ∞. Also, the first moment is zero, that is,
∫
vK(v)dv = 0.

Furthermore, K is Lipschitz continuous, that is, |K(v)−K(v′)| ≤ L|v− v′| for some L <∞ and all

v, v′ ∈ R. (ii) Let hj = ρjh, where each ρj is a positive constant and ρj →∞ as j →∞ ; h→ 0 as

n→∞. In addition, nhd+1
j →∞ as n→∞.

Assumption A.1.1 allows us to approximate the locally stationary variable xt by stationary variable

xt(τ) when τt is in a small neighborhood of τ . Assumption A.1.2 imposes smoothness condition on the

unknown functions and the density of xt(τt). Assumption A.1.3 is required to guarantee a certain rate of

the convergence rate, which is also used in Vogt (2012). Assumption A.1.4 is a standard assumption for

kernel function K(·) and bandwidth hj .

Proof of Theorem 2.1.

Observe that

ĝj(τ, x)− gj(τ, x) =
1

f̂(τ, x)

(
ĝEj (τ, x) + ĝBj (τ, x)− gj(τ, x)f̂(τ, x)

)
,(32)
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where we let L(x) =
∏d
i=1K(xi) and then write

f̂(τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
,

ĝEj (τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j ,

ĝBj (τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
gj(τt, xt).

LetBj(τ, x) =
√
nhd+1

j

(
ĝBj (τ, x)− gj(τ, x)f̂(τ, x)

)
denote the bias part and Vj(τ, x) =

√
nhd+1

j ĝEj (τ, x)

denote the stochastic part.

Then we have (ĝj(τ, x)− gj(τ, x)) =
(
nhd+1

j

)−1/2
f̂(τ, x)−1 (Vj(τ, x) +Bj(τ, x)).

We then proceed with the following three steps to show the asymptotic normality of the estimator

ĝj(τ, x). The steps are similar to the proof of Theorem 4.3 in Vogt (2012).

• We first show that Bj(τ, x) =
√
nhd+1

j f(τ, x)
(
Bj,τ,x + oP (h2

j )
)

, where Bj,τ,x = h2
j (Rj(τ, x) +

bj(τ, x)).

• We establish the asymptotic normality Vj(τ, x)→D N(0, κd+1
0 σ2

j (x)f(τ, x)), where κ0 =
∫
K2(u)du.

• We then show that f̂(τ, x)− f(τ, x) = oP (1) and f̂(τ, x)−1 = OP (1).

Following the spirit of Vogt (2012) that approximate the locally stationary time series xt by its

stationary counterpart xt(τt), we write

E[ĝBj (τ, x)− gj(τ, x)f̂(τ, x)] = Q1(τ, x) + · · ·+Q4(τ, x),

where Qi(τ, x) = 1
nhd+1

j

n∑
t=1

Kh(τ − τt)qi(τ, x), Kh(x) = K(x/h) and

q1(τ, x) =E

[
d∏
i=1

K̄h

(
xi − xit

){ d∏
i=1

Kh

(
xi − xit

)
−

d∏
i=1

Kh

(
xi − xit(τt)

)}
×
{
gj
(
τt, xt

)
− gj(τ, x)

}]

q2(τ, x) =E

[
d∏
i=1

K̄h

(
xi − xit

) d∏
i=1

Kh

(
xi − xit(τt)

)
×
{
gj
(
τt, xt

)
− gj

(
τt, xt(τt)

)}]
,

q3(τ, x) =E

[{ d∏
i=1

K̄h

(
xi − xit

)
−

d∏
i=1

K̄h

(
xi − xit(τt)

)}

×
d∏
i=1

Kh

(
xi − xit(τt)

){
gj
(
τt, xt(τt)

)
− gj(τ, x)

}]
,

q4(τ, x) =E

[
d∏
i=1

Kh

(
xi − xit(τt)

){
gj
(
τt, xt(τt)

)
− gj(τ, x)

}]
,

in which K̄ is a Lipschitz continuous function with support [−qC1, qC1] for some q > 1 and K̄(x) = 1 for

all x ∈ [−C1, C1] and write K̄h(x) = K̄(x/h).
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As the kernel function is bounded, we have∣∣∣∣∣
d∏
i=1

Kh

(
xi − xit

)
−

d∏
i=1

Kh

(
xi − xit(τt)

)∣∣∣∣∣ ≤ C
d∑

k=1

∣∣∣Kh

(
xk − xkt

)
−Kh

(
xk − xkt (τt)

)∣∣∣r ,
where C is a finite constant and r = min{ρ, 1}. Then we have

|Q1(τ, x)| ≤ C

nhd+1
j

n∑
t=1

Kh(τ − τt)× E

[
d∑

k=1

∣∣∣∣Kh

(
xk − xkt

)
−Kh

(
xk − xkt (τt)

)∣∣∣∣r

×
d∏
i=1

K̄h

(
xi − xit

)∣∣∣∣gj(τt, xt)− gj(τ, x)

∣∣∣∣
]
.

Under Assumptions A.1.1(i) and A.1.4(i), we further have

|Q1(τ, x)| ≤ C

nhdj

n∑
t=1

Kh(τ − τt)E

[
d∑

k=1

∣∣∣∣Kh

(
xk − xkt

)
−Kh

(
xk − xkt (τt)

)∣∣∣∣r
]

≤ C

nhdj

n∑
t=1

Kh(τ − τt)E

[
d∑

k=1

∣∣∣∣ 1

nhj
Unt(τt)

∣∣∣∣r
]
≤ C

nrhd−1+r
j

.

Similarly, we can show that |Q2(τ, x)| ≤ C
nrhdj

and |Q3(τ, x)| ≤ C
nrhd−1+r

j

. These results are uniformly in τ

and x.

Define

f̂∗(τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt(τt)− x

hj

)
,

ĝB∗j (τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt(τt)− x

hj

)
gj(τt, xt(τt)).

Then we can write Q4(τ, x) = E
[
ĝB∗j (τ, x)− gj(τ, x)f̂∗(τ, x)

]
.

Under Assumptions A.1.1(i), A1.2(ii)(iii), A.1.4(i) and by change of variables, Taylor expansion, we

can show that

Ef̂∗(τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
E
[
L

(
xt(τt)− x

hj

)]
(33)

=
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)[∫
L

(
xy − x
hj

)
f(τt, xy) dxy

]
=

1 + oP (1)

hd+1
j

∫∫
K

(
τy − τ
hj

)
L

(
xy − x
hj

)
f(τy, xy) dτy dxy

=
1 + oP (1)

hd+1
j

∫
· · ·
∫
K

(
τy − τ
hj

) d∏
i=1

K

(
xiy − x
hj

)
f(τy, x

1
y, · · · , xdy) dτy dx1

y · · · dxdy

=

∫
· · ·
∫
K(p)

d∏
i=1

K(qi)f(τ + phj , x
1 + q1hj , · · · , xd + qdhj) dp dq

1 · · · dqd(1 + oP (1))

=

∫
· · ·
∫
K(p)

d∏
i=1

K(qi)f(τ, x) dp dq1 · · · dqd
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+

∫
· · ·
∫
K(p)

d∏
i=1

K(qi)

(
phj

∂f(τ, x)

∂τ
+

d∑
i=1

qihj
∂f(τ, x)

∂xi

)
dp dq1 · · · dqd

+

∫
· · ·
∫
K(p)

d∏
i=1

K(qi)
1

2

(
p2h2

j

∂2f(τ, x)

∂τ2
+

d∑
i=1

q2
i h

2
j

∂2f(τ, x)

∂xi2

)
dp dq1 · · · dqd

+

∫
· · ·
∫
K(p)

d∏
i=1

K(qi)
1

2

(
d∑
i=1

pqih
2
j

∂2f(τ, x)

∂τ∂xi
+ 2

d∑
i=2

i−1∑
s=1

qiqsh
2
j

∂2f(τ, x)

∂xi∂xs

)
dp dq1 · · · dqd

+oP (h2
j ) = f(τ, x) +

κ2

2
h2
j

(
∂2f(τ, x)

∂τ2
+

d∑
i=1

∂2f(τ, x)

∂xi2

)
+ oP (h2

j ).

Similarly, we can show that

E[ĝB∗j (τ, x)] =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
E
[
L

(
xt(τt)− x

hj

)
gj(τt, xt(τt))

]

=
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)[∫
L

(
xy − x
hj

)
gj(τt, xy)f(τt, xy) dxy

]
=

1 + oP (1)

hd+1
j

∫∫
K

(
τy − τ
hj

)
L

(
xy − x
hj

)
gj(τy, xy)f(τy, xy) dτy dxy

=
1 + oP (1)

hd+1
j

∫
· · ·
∫
K

(
τy − τ
hj

) d∏
i=1

K

(
xiy − x
hj

)
gj(τy, x

1
y, · · · , xdy)f(τy, x

1
y, · · · , xdy) dτy dx1

y · · · dxdy.

Taking the second-order Taylor expansion for gj(τy, x
1
y, · · · , xdy) and f(τy, x

1
y, · · · , xdy) and keeping the

terms up to OP (h2
j ), we obtain that

EĝB∗j (τ, x) = gj(τ, x)f(τ, x) +
κ2

2
h2
j

(
2
∂gj(τ, x)

∂τ

∂f(τ, x)

∂τ
+
∂2gj(τ, x)

∂τ2
f(τ, x)

)
+
κ2

2
h2
j

d∑
i=1

(
2
∂gj(τ, x)

∂xi
∂f(τ, x)

∂xi
+
∂2gj(τ, x)

∂xi2
f(τ, x)

)

+
κ2

2
h2
j

(
∂2f(τ, x)

∂τ2
gj(τ, x) +

d∑
i=1

∂2f(τ, x)

∂xi2
gj(τ, x)

)
+ oP (h2

j ).

Then we have

Q4(τ, x) = E[ĝB∗j (τ, x)]− gj(τ, x)E[f̂∗(τ, x)]

=
κ2

2
h2
j

d∑
i=1

(
2
∂gj(τ, x)

∂xi
∂f(τ, x)

∂xi
+
∂2gj(τ, x)

∂xi2
f(τ, x)

)
+
κ2

2
h2
j

(
2
∂gj(τ, x)

∂τ

∂f(τ, x)

∂τ
+
∂2gj(τ, x)

∂τ2
f(τ, x) + oP (h2

j )

)
= f(τ, x)

(
h2
jRj(τ, x) + h2

jbj(τ, x) + oP (h2
j )
)

= f(τ, x)
(
Bj,τ,x + oP (h2

j )
)
,(34)

where Bj,τ,x = h2
jRj(τ, x) + h2

jbj(τ, x) and

Rj(τ, x) =
κ2

2

d∑
i=1

(
2
∂gj(τ, x)

∂xi
∂f(τ, x)

∂xi
+
∂2gj(τ, x)

∂xi2
f(τ, x)

)
/f(τ, x),
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bj(τ, x) =
κ2

2

(
2
∂gj(τ, x)

∂τ

∂f(τ, x)

∂τ
+
∂2gj(τ, x)

∂τ2
f(τ, x)

)
/f(τ, x).

Define B∗j (τ, x) = 1√
nhd+1

j

Bj(τ, x). Then we have

E[B∗j (τ, x)] = Q1(τ, x) + · · ·+Q4(τ, x).

Combining the results of Q1(τ, x), · · · , Q4(τ, x), we have that

E[B∗j (τ, x)] = f(τ, x)Bj,τ,x + oP (h2
j ) +OP

(
1

nrhdj

)
.(35)

As we assume that nrhd+2
j →∞, we have

E[B∗j (τ, x)]− f(τ, x)Bj,τ,x = oP (h2
j ) = oP (1).

Similar to the derivation of equation (35), we can show that

Var[B∗j (τ, x)] = E[B∗j
2(τ, x)]−

(
E[B∗j (τ, x)]

)2
= oP (1).(36)

Hence, we have B∗j (τ, x)− E[B∗j (τ, x)] = oP (1).

Therefore, we have

B∗j (τ, x)− f(τ, x)Bj,τ,x = B∗j (τ, x)− E[B∗j (τ, x)] + E[B∗j (τ, x)]− f(τ, x)Bj,τ,x = oP (1),

which is equivalent as

Bj(τ, x)√
nhd+1

j

f(τ, x)−1 −Bj,τ,x = oP (1).(37)

On the other hand, we have that

Vj(τ, x) =
√
nhd+1

j ĝEj (τ, x) =
1√
nhd+1

j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j .

It is obvious that E[Vj(τ, x)] = 0 and

V 2
j (τ, x) =

1

nhd+1
j

n∑
t=1

K2

(
τt − τ
hj

)
L2

(
xt − x
hj

)
e2
t+j

+
2

nhd+1
j

n∑
t=2

t−1∑
s=1

K

(
τt − τ
hj

)
K

(
τs − τ
hj

)
L

(
xt − x
hj

)
L

(
xs − x
hj

)
et+jes+j ,

≡ A1 +A2,

where A1 = 1
nhd+1

j

∑n
t=1K

2
(
τt−τ
hj

)
L2
(
xt−x
hj

)
e2
t+j and

A2 = 2
nhd+1

j

∑n
t=2

∑t−1
s=1K

(
τt−τ
hj

)
K
(
τs−τ
hj

)
L
(
xt−x
hj

)
L
(
xs−x
hj

)
et+jes+j .

By iterated expectations and change of variables, we can show that

E[A1] =
1

nhd+1
j

n∑
t=1

K2

(
τt − τ
hj

)
E
[
L2

(
xt − x
hj

)
e2
t+j

]
(38)
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=
1

hd+1
j

K2

(
τt − τ
hj

)
E
[
L2

(
xt − x
hj

)
E[e2

t+j |xt = x]

]

=
σ2
j (x)

hd+1
j

K2

(
τt − τ
hj

)
E
[
L2

(
xt − x
hj

)]

=
σ2
j (x)

hd+1
j

K2

(
τt − τ
hj

)
E
[
L2

(
xt(τt)− x

hj

)]
(1 + oP (1))

=
σ2
j (x)

hd+1
j

K2

(
τt − τ
hj

)∫
L2

(
xy − x
hj

)
f(τt, xy) dxy(1 + oP (1))

=
σ2
j (x)

hd+1
j

∫∫
K2

(
τy − τ
hj

)
L2

(
xy − x
hj

)
f(τy, xy) dτy dxy(1 + oP (1))

= σ2
j (x)

∫
· · ·
∫
K2(p)

d∏
i=1

K2(qi)f(τ, x) dp dq1 · · · dqd

+σ2
j (x)

∫
· · ·
∫
K2(p)

d∏
i=1

K2(qi)

(
phj

∂f(τ, x)

∂τ
+

d∑
i=1

qihj
∂f(τ, x)

∂xi

)
dp dq1 · · · dqd

+σ2
j (x)

∫
· · ·
∫
K2(p)

d∏
i=1

K2(qi)
1

2

(
p2h2

j

∂2f(τ, x)

∂τ2
+

d∑
i=1

q2
i h

2
j

∂2f(τ, x)

∂xi2

)
dp dq1 · · · dqd

+σ2
j (x)

∫
· · ·
∫
K2(p)

d∏
i=1

K2(qi)
1

2

( d∑
i=1

pqih
2
j

∂2f(τ, x)

∂τ∂xi

+ 2
d∑
i=2

i−1∑
s=1

qiqsh
2
j

∂2f(τ, x)

∂xi∂xs

)
dp dq1 · · · dqd + oP (h2

j ) = σ2
j (x)f(τ, x)κd+1

0 +OP (hj).

Meanwhile, by the same steps as in Theorem 1 of Hansen (2008), we have that E[A2] = oP (1).

Therefore, we can obtain that Var[Vj(τ, x)] = σ2
j (x)f(τ, x)κd+1

0 + oP (1).

We then use the small-block and big-block arguments (refer to Fan and Yao (2003)), that is, decompose

Vj(τ, x) alternately into big blocks and small blocks, we can neglect the small blocks and use the mixing

conditions to replace the big blocks by independent random variables. Then apply a Lindeberg theorem,

we can get that Vj(τ, x) →D N(0, κd+1
0 σ2

j (x)f(τ, x)). The proof is in the same spirit as that for the

standard strictly stationary setting.

By similar argument as the (35), we have that

Ef̂(τ, x) = Ef̂∗(τ, x)(1 + oP (1)).

Then the bias of f̂(τ, x) will be

(39) Ef̂(τ, x)− f(τ, x) =
κ2

2
h2
j

(
∂2f(τ, x)

∂τ2
+

d∑
i=1

∂2f(τ, x)

∂xi2

)
+ oP (h2

j ).

Following the similar steps of the proof of Theorem 1.1 in Li and Racine (2007), we can obtain the

variance of f̂(τ, x):

(40) Var
(
f̂(τ, x)

)
=

1

nhd+1
j

(
κd+1

0 f(τ, x) +OP (hj)
)
.
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Based on equations (39) and (40) and Assumption A.1.4(ii), we can obtain that f̂(τ, x)−f(τ, x) = oP (1).

It is also straightforward to see that f̂(τ, x)−1 = OP (1).

Then Vj(τ, x)/f̂(τ, x) →D N(0, Vj,τ,x), where Vj,τ,x = κd+1
0 σ2

j (x)/f(τ, x). Combining with equation

(37), we have √
nhd+1

j (ĝj(τ, x)− gj(τ, x)−Bj,τ,x)→D N(0, Vj,τ,x),(41)

Therefore, we have completed the proof of Theorem 2.1.

Proof of Theorem 2.2.

Observe that

(ĝj(τ, x)− gj(τ, x)) =
(
nhd+1

j

)−1/2
f̂(τ, x)−1 (Vj(τ, x) +Bj(τ, x))(42)

=
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1)) ρ

−(d+1)/2
j Vj(τ, x)

+
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1)) ρ

−(d+1)/2
j Bj(τ, x),

which gives J∑
j=1

ĝj(τ, x)−
J∑
j=1

gj(τ, x)

(43)

=
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))

J∑
j=1

ρ
−(d+1)/2
j Vj(τ, x)

+
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))

J∑
j=1

ρ
−(d+1)/2
j Bj(τ, x)

≡
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))SnJ(τ, x) +

(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))RnJ(τ, x),

where

SnJ(τ, x) =
J∑
j=1

ρ
−(d+1)/2
j Vj(τ, x)(44)

=
(
nhd+1

)−1/2
n∑
t=1

 J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j

 ,

RnJ(τ, x) =

J∑
j=1

ρ
−(d+1)/2
j Bj(τ, x)(45)

=
(
nhd+1

)−1/2
n∑
t=1

 J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
(gj(τt, xt)− gj(τ, x))

 .

It is obvious that E[SnJ(τ, x)] = 0. It can be also shown that

SnJ(τ, x) =

J∑
j=1

ρ
− d+1

2
j Vj(τ, x)
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= (nhd+1)−
1
2

J∑
j=1

ρ
−(d+1)
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j

= (nhd+1)−
1
2TnJ(τ, x),

where TnJ(τ, x) =
∑n

t=1

(∑J
j=1 ρ

−(d+1)
j K

(
τt−τ
hj

)
L
(
xt−x
hj

)
et+j

)
=
∑n

t=1 Ut(J), in which

Ut(J) =
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j .

It is easy to see that

T 2
nJ(τ, x) =

n∑
t=1

U2
t (J) + 2

n∑
t=2

t−1∑
s=1

Ut(J)Us(J),

and

U2
t (J) =

J∑
j=1

ρ
−2(d+1)
j K2

(
τt − τ
hj

)
L2

(
xt − x
hj

)
e2
t+j

+ 2

J∑
i=2

i−1∑
j=1

ρ
−(d+1)
i ρ

−(d+1)
j K

(
τt − τ
hi

)
K

(
τt − τ
hj

)
L

(
xt − x
hi

)
L

(
xt − x
hj

)
et+iet+j .

According to equation (38), we can show that

E[U2
t (J)] =

J∑
j=1

ρ
−2(d+1)
j K2

(
τt − τ
hj

)
E
[
E[e2

t+j | xt = x]L2

(
xt − x
hj

)]

=

J∑
j=1

ρ
−2(d+1)
j σ2

j (x)hd+1
j f(τ, x)κd+1

0 (1 + oP (1))

= f(τ, x)κd+1
0 hd+1

J∑
j=1

σ2
j (x)ρ

−(d+1)
j (1 + oP (1)).

Similar to the derivation of variance of Vj(τ, x) in Theorem 2.1, we have

Var(T 2
nJ(τ, x)) = E[T 2

nJ(τ, x)] = E

[
n∑
t=1

U2
t (J)

]
+ oP (1)

= nf(τ, x)κd+1
0 hd+1

J∑
j=1

σ2
j (x)ρ

−(d+1)
j + oP (1).

Hence, we have

Var (SnJ(τ, x)) = E
[
S2
nJ(τ, x)

]
= (nhd+1)−1E

[
T 2
nJ(τ, x)

]
= n−1 1

hd+1
nf(τ, x)κd+1

0 hd+1
J∑
j=1

σ2
j (x)ρ

−(d+1)
j + oP (1)

= f(τ, x)κd+1
0

J∑
j=1

σ2
j (x)ρ

−(d+1)
j + oP (1).
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In view of the α–mixing condition, using the big-blocks and small-blocks arguments, we can show that

as n→∞

(46)

 J∑
j=1

ρ
−(d+1)
j σ2

j (x)

−1/2

SnJ(τ, x)→D N
(

0, f(τ, x)κd+1
0

)
.

From equation (43), we have that

f(τ, x)
√
nhd+1

 J∑
j=1

ĝj(τ, x)−
J∑
j=1

gj(τ, x)

 = (1 + oP (1))SnJ(τ, x) + (1 + oP (1))RnJ(τ, x)

Let BJ(τ, x) = RnJ (τ,x)

f(τ,x)
√
nhd+1

. Then based on equation (37) and under Assumption A.1.4(ii), it is easy

to show that

BJ(τ, x) =

J∑
j=1

(h2jRj(τ, x) + h2jbj(τ, x))

=

J∑
j=1

ρ2jh
2κ2

[
1

2

∂2gj(τ, x)

∂τ2
+

1

2

d∑
i=1

∂2gj(τ, x)

∂xi2
+ f−1(τ, x)

∂f(τ, x)

∂τ

∂gj(τ, x)

∂τ
+ f−1(τ, x)

d∑
i=1

∂f(τ, x)

∂xi
∂gi(τ, x)

∂xi

]
.

Then we have

f(τ, x)
√
nhd+1

 J∑
j=1

ĝj(τ, x)−
J∑
j=1

gj(τ, x)−BJ(τ, x)

 = (1 + oP (1))SnJ(τ, x),

which shows that

f(τ, x)
√
nhd+1Σ−1

J (x)

 J∑
j=1

ĝj(τ, x)−
J∑
j=1

ĝj(τ, x)−BJ(τ, x)

→D N
(

0, f(τ, x)κd+1
0

)
,

where ΣJ(x) =
∑J

j=1 ρ
−(d+1)
j σ2

j (x).

Therefore, we have

√
nhd+1Σ−1

J (x)

 J∑
j=1

ĝj(τ, x)−
J∑
j=1

gj(τ, x)−BJ(τ, x)

→D N (0, V (τ, x)) ,

where V (τ, x) = κd+1
0 f−1(τ, x).

Therefore, we have completed the proof of Theorem 2.2.

A.2. The APR model

In order to establish asymptotic properties for β̂j(τ) and ĝj(x), we introduce the following assumptions.

Assumption A.2.1 (i) {xt} is locally stationary with associated process {xt(τ)}, and all xt (1 ≤ t ≤ n)

have the same compact support V = [amin, amax]. Moreover, the density f(τ, x) of xt(τ) is smooth

in τ . (ii) For each τ ∈ [0, 1], xt(τ) is a strictly stationary and α-mixing process with mixing

coefficient α(i) such that
∑∞

i=1 α
δ/(2+δ)(i) <∞ for some δ > 0. For u 6= τ ∈ [0, 1], xt(τ) and xs(u)

are uncorrelated for any t and s.
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Assumption A.2.2 There exists an orthogonal function sequence {pi(x), i ≥ 0} on the support [amin, amax]

with respect to dF (x) such that supτ∈[0,1] supj≥0 E|pj(x1(τ))| <∞.

Assumption A.2.3 For all t and any τ ∈ [0, 1], xt(τ) is independent of {es,−∞ < s <∞}.

Assumption A.2.4 Suppose that there is a filtration sequence Fnt such that (et,Fn,t) form a martingale

difference sequence. Meanwhile, E(e2
t |Fn,t−1) = σ2(τt) almost surely with continuous and nonzero

function σ(·) and for some q ≥ 4, max1≤t≤n E(|et|q|Fn,t−1) <∞.

Assumption A.2.5 (i)The functions βj(·) and gj(·) are continuously differentiable up to s1 and s2,

respectively. (ii)For βj(·) function, let
∫ 1

0 βj(r)dr = 0.

Assumption A.2.6 Suppose that as n → ∞, (i) nk
−(2s1−1)
1j = o(1) and nk

−(2s2−1)
2j = o(1) and (ii)

nk2jk
−2s1
1j = o(1), nk1jk

−s2
2j = o(1).

Assumptions A.2.1–A.2.4 allow us to approximate the locally stationary variable xt by stationary

variable xt(τ) when τt is in a small neighborhood of τ . In this paper, we require the support of the

locally stationary process to be compact. Assumption A.2.5 (i) imposes a smoothness condition on the

unknown functions, which is to guarantee a certain rate of the convergence. Assumption A.2.5(ii) is an

identification condition since in both the expansions of βj(·) and gj(·), there is a constant term that could

not be distinguished one from another in the regression. Assumption A.2.6 imposes the rates of divergence

on k1j and k2j , which guarantee the convergence of the proposed estimators.

Proof of Theorem 2.3.

Let Dnj = diag(
√
nIk1j ,

√
nIk2j ) denote a diagonal matrix of kj×kj with kj = k1j +k2j . From Lemma

A.3 of Dong and Linton (2018), we have that ‖D−1
nj B

>
nkj
BnkjD

−1
nj − Ukj‖ = oP (1), then we have

ĉ(j) = (B>nkjBnkj )
−1B>nkjy(j) = (B>nkjBnkj )

−1B>nkj (Bnkjc(j) + γ(j) + e(j))

= c(j) + (B>nkjBnkj )
−1B>nkj (γ(j) + e(j)).

Thus

ĉ(j) − c(j) = (B>nkjBnkj )
−1B>nkj (γ(j) + e(j)) = D−1

nj (D−1
nj B

>
nkj
BnkjD

−1
nj )−1D−1

nj B
>
nkj

(γ(j) + e(j))

= D−1
nj (Ukj + oP (1))−1D−1

nj B
>
nkj

(γ(j) + e(j)) = D−1
nj (U−1

kj + oP (1))D−1
nj B

>
nkj

(γ(j) + e(j)).

Then we have

Dnj(ĉ(j) − c(j)) = (U−1
kj

+ oP (1))D−1
nj B

>
nkj

(γ(j) + e(j)).

Then, for any τ ∈ [0, 1] and x ∈ V , √n[β̂j(τ)− βj(τ)]

√
n[ĝj(x)]− gj(x)]

 = Φj(τ, x)>Dnj(ĉ(j) − c(j)) +

 √nγk1j (τ)

√
nγk2j (x)


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= Φj(τ, x)>U−1
kj
D−1
nj B

>
nkj

(γ(j) + e(j)) +

 √nγk1j (τ)

√
nγk2j (x)

 .

We then proceed with two main steps as follows.

• First, we can establish the asymptotic normality from Φj(τ, x)>U−1
kj
D−1
nj B

>
nkj
e(j) by Cramér-Wold

theorem.

• Second, we can show that the remainder terms are asymptotically negligible.

For the proof of normality, we can write that Φj(τ, x)>U−1
kj
D−1
nj B

>
nkj
e(j) =

∑n
t=1 ηntet+j , where

ηnt = Φj(τ, x)>U−1
kj
D−1
nj

 φk1j (τt)

ak2j (xt)

 .

Recall that ∆nj =
[
Φj(τ, x)>U−1

kj
VkjU

−1
kj

Φj(τ, x)
]1/2

. By Cramér-Wold theorem and Corollary 3.1 of Hall

and Heyde (1980), we can prove that ∆−1
nj

∑n
t=1 ηntet+j →D N(0, Ikj ). The details are similar to the

proofs of Theorem 3.1 and 3.2 in Dong and Linton (2018).

Proof of Theorem 2.4.

Define Ωnj = ∆nj∆nj = Φj(τ, x)>U−1
kj
VkjU

−1
kj

Φj(τ, x).

Theorem 2.4 implies that for large enough n, we have √n[β̂j(τ)− βj(τ)]

√
n[ĝj(x)]− gj(x)]

 ≈D N(0,Ωnj).

Let

Ωnj =

 Ω11,j Ω12,j

Ω21,j Ω22,j

 .

Then we have

√
n
(
β̂j(τ) + ĝj(x)− βj(τ)− gj(x)

)
≈D N(0,Σnj),

where Σnj = Ω11,j + Ω22,j + 2Ω12,j .

Define mj(τ, x) = βj(τ) + gj(x) and m̂j(τ, x) = β̂j(τ) + ĝj(x).

√
n (m̂j(τ, x)−mj(x, τ)) ≈D N(0,Σnj),

By the following definitions:

m̂(τ, x) =
J∑
j=1

m̂j(τ, x) and m(τ, x) =
J∑
j=1

mj(τ, x),

We then have as n→∞

(47)
√
nΣ
−1/2
nJ (m̂(τ, x)−m(τ, x))→D N (0, 1) ,

where ΣnJ =
∑J

j=1 Σnj .

36



References

Campbell, J. Y. and Shiller, R. J. (1988), ‘The dividend–price ratio and expectations of future dividends and

discount factors’, Review of Financial Studies 1(3), 195–228.

Campbell, J. Y. and Thompson, S. B. (2008), ‘Predicting excess stock returns out of sample: Can anything beat

the historical average?’, Review of Financial Studies 21(4), 1509–1531.

Campbell, J. Y. and Yogo, M. (2006), ‘Efficient tests of stock return predictability’, Journal of Financial Economics

81(1), 27–60.

Chen, Q. and Hong, Y. (2010), ‘Predictability of equity returns over different time horizons: a nonparametric

approach’, Manuscript, Cornell University .

Cheng, T., Gao, J. and Zhang, X. (2018), ‘Nonparametric localized bandwidth selection in kernel density estimation’,

Econometric Reviews forthcoming.

Diebold, F. X. and Nason, J. A. (1990), ‘Nonparametric exchange rate prediction?’, Journal of international

Economics 28(3-4), 315–332.

Dong, C. and Linton, O. (2018), ‘Additive nonparametric models with time variable and both stationary and

nonstationary regressors’, Journal of Econometrics 207(1), 212–236.

Fama, E. F. (1991), ‘Efficient capital markets: II’, The Journal of Finance 46(5), 1575–1617.

Fama, E. F. and French, K. R. (1988), ‘Dividend yields and expected stock returns’, Journal of Financial Economics

22(1), 3–25.

Fan, J. and Gijbels, I. (1995), ‘Data–driven bandwidth selection in local polynomial fitting: variable bandwidth and

spatial adaptation’, Journal of the Royal Statistical Society. Series B (Methodological) 57(2), 371–394.

Fan, J. and Yao, Q. (2003), Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York.

Hall, P. G. and Heyde, C. C. (1980), Martingale Limit Theory and Its Application, Academic press, New York.

Hansen, B. E. (2008), ‘Uniform convergence rates for kernel estimation with dependent data’, Econometric Theory

24(03), 726–748.

Hansen, L. P. and Hodrick, R. J. (1980), ‘Forward exchange rates as optimal predictors of future spot rates: an

econometric analysis’, The Journal of Political Economy 88(5), 829–853.
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